Search results for "steel fibers"

showing 5 items of 5 documents

Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets

2017

This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly adva…

Digital image correlationMaterials science020101 civil engineering02 engineering and technologyFiber-reinforced concreteArticle0201 civil engineeringlaw.inventionBrittlenesslawResidual stressadhesive-mechanical connectionGeneral Materials ScienceFiberComposite materialexternal CFRP sheetsConcrete coverbusiness.industrydebonding failureStructural engineering021001 nanoscience & nanotechnologymechanical testingsteel fibers reinforced concreteadhesive-mechanical connection; debonding failure; external CFRP sheets; mechanical testing; steel fibers reinforced concreteAdhesiveDeformation (engineering)0210 nano-technologybusinessMaterials
researchProduct

Behaviour in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement

2004

Abstract The compressive behavior of lightweight fiber reinforced concrete confined with transverse reinforcement consisting of steel stirrups or spirals was analyzed. Pumice stone and expanded clay aggregates were utilized to decrease the weight of the composite; hooked steel fibers were also added. The investigation was carried out by testing cylindrical and prismatic specimens of different sizes in compression using an open-loop displacement control machine, recording the full load–deformation curves. The influence of the dimensions and shape on the bearing capacity and on the ductility of the specimens confined with transverse steel reinforcements was analyzed. The results show the poss…

Materials sciencebusiness.industryStress–strain curveComposite numberlightweight concrete pumice stone expanded clay steel fibers steel transverse reinforcement compression tests stress-strain curves shape effectsBuilding and ConstructionFiber-reinforced concreteStructural engineeringCompression (physics)law.inventionTransverse planelawGeneral Materials ScienceBearing capacityComposite materialReinforcementDuctilitybusiness
researchProduct

Steel fiber-reinforced concrete corbels:experimental behavior and shear strength prediction

2007

Corbels are structural members often used in reinforced concrete structures to transfer vertical and horizontal forces to principal members. This paper presents experimental research regarding the flexural behavior of corbels in plain and fibrous concrete and in the presence of steel bars. The study considers the influence of the type of concrete grade (normal- and high-strength concretes), of the fiber percentage and of the arrangement and percentage of the steel bars on the flexural behavior of the corbels. The results in terms of load-deflection curves and crack patterns show the effectiveness in using fibrous reinforced concrete corbels as well as in the presence of stirrups ensuring ad…

Materials sciencebusiness.industrycorbels reinforced concrete shear strength steel fibers stirrupsBuilding and ConstructionStructural engineeringFiber-reinforced concretelaw.inventionTypes of concreteCrackingFlexural strengthCorbellawDeflection (engineering)Reinforced solidBearing capacityComposite materialbusinessCivil and Structural Engineering
researchProduct

A model for SFRC beams without shear reinforcement

2008

In this paper a physical model, for the prediction of ultimate shear strength of Steel Fibers Reinforced Concrete (SFRC) beams is developed from the plastic Crack Sliding Model (CSM) introduced by Zhang (1997), based on the hypothesis that cracks can be transformed into yield lines. In this work the effectiveness factors are recalculated for SFRC beams and some further developments are introduced in the CSM, taking into account the fundamental post cracking tensile strength contribute of SFRC. The proposed model is validate by a large set of tests collected in literature and some numerical analyses were carried out to show the influence of fibers on the failure beams mode.

Settore ICAR/09 - Tecnica Delle CostruzioniArchitecture2300 Environmental Science (all)Steel Fibers Reinforced Concrete; Crack Sliding Model; Shear; Concrete tensile strengthBuilding and ConstructionCivil and Structural Engineering
researchProduct

Flexural Behavior of Steel Fibrous Reinforced Concrete Deep Beams

2012

Experimental research was carried out regarding the flexural behavior of deep beams cast with plain and fibrous concrete with hooked steel fibers, and subjected to monotonic vertical loads. Four deep fiber-reinforced concrete beams were cast. Two of them were made of plain concrete with main and web steel reinforcements (RC), and two were made of hooked steel fiber-reinforced concrete (SFRC) with main steel reinforcements. The experimental results show the brittle behavior of reinforced deep RC members characterized by crushing of concrete struts and fracture of web steel bars. SFRC deep beams exhibit higher strength and, above all, ductility with respect to RC members due to the bridging a…

steel fibersConcrete beamsMaterials sciencebusiness.industryMechanical EngineeringBuilding and ConstructionStructural engineeringReinforced concreteFinite element methoddeep beamBrittlenessFlexural strengthMechanics of MaterialsDeflection (engineering)General Materials SciencebusinessReinforcementSofteningCivil and Structural EngineeringJournal of Structural Engineering
researchProduct